Pembahasan Matematika IPA UN: Fungsi Kuadrat

Posted on

pembahasan selanjutnya adalah

Pembahasan Matematika IPA UN: Fungsi Kuadrat, penerapan fungsi kuadrat dalam kehidupan nyata
Penerapan fungsi kuadrat dalam kehidupan nyata

Pembahasan soal-soal Ujian Nasional (UN) SMA-IPA bidang studi Matematika dengan materi pembahasan Fungsi Kuadrat yang meliputi:

  • persamaan grafik fungsi kuadrat, 
  • grafik fungsi kuadrat memotong sumbu x, 
  • grafik fungsi kuadrat menyinggung garis, serta
  • grafik fungsi kuadrat definit positif.

Soal Fungsi Kuadrat UN 2008

Persamaan grafik fungsi kuadrat yang mempunyai titik balik minimum (1, 2) dan melalui titik (2, 3) adalah ….

A.   y = x2 − 2x + 1
B.   y = x2 − 2x + 3
C.   y = x2 + 2x − 1
D.   y = x2 + 2x + 1
E.   y = x2 − 2x − 3



Pembahasan

Persamaan grafik fungsi kuadrat yang melalui titik balik minimum atau puncak (p, q) dirumuskan sebagai:

y = a(xp)2 + q

Puncak grafik fungsi kuadrat adalah (1, 2) sehingga diperoleh:

y = a(x − 1)2 + 2

Grafik fungsi kuadrat tersebut melalui titik (2, 3). Titik ini bisa kita substitusikan untuk mendapatkan nilai a.

3 = a(2 − 1)2 + 2
3 = a + 2
a = 1

Dengan demikian, persamaan fungsinya adalah:

y = 1(x − 1)2 + 2
   = x2 − 2x + 1 + 2
   = x2 − 2x + 3

Jadi, persamaan grafik fungsi kuadrat tersebut adalah y = x2 − 2x + 3 (B).

Soal Fungsi Kuadrat UN 2011

Grafik y = px2 + (p + 2)xp + 4 memotong sumbu x di dua titik. Batas-batas nilai p yang memenuhi adalah ….

A.   p < −2 atau p > −2/5
B.   p < 2/5 atau p > 2
C.   p < −2 atau p >1 0
D.   2/5 < p < 2
E.   2 < p < 10

Pembahasan

Koefisien fungsi y = px2 + (p + 2)xp + 4 adalah:

a = p
b = p + 2
c = −p + 4

Agar grafik fungsi kuadrat memotong sumbu x di dua titik, diskriminan fungsi kuadrat tersebut harus bernilai positif.

                                  D > 0
                        b2 − 4ac > 0
    (p + 2)2 − 4p(−p + 4) > 0
p2 + 4p + 4 + 4p2 − 16p > 0
                5p2 − 12p + 4 > 0
              (5p − 2)(p − 2) > 0

Diperoleh titik ekstrem:

p = 2/5 atau p = 2

Artkel Terkait  Rangkuman Materi, Contoh Soal Expressions Of Agreement And Disagreement & Pembahasannya

Karena tanda pertidaksamaannya ‘>’ maka interval terletak di sebelah kiri 2/5 atau di sebelah kana 2.

p < 2/5 atau p > 2

Jadi, batas-batas nilai p yang memenuhi adalah opsi (B).

Soal Fungsi Kuadrat UN 2009

Jika grafik fungsi f(x) = x2 + px + 5 menyinggung garis 2x + y = 1 dan p > 0 maka nilai p yang memenuhi adalah ….

A.   –6
B.   –4
C.   –2
D.   2
E.   4



Pembahasan

Misal:

Parabola :  y1 = x2 + px + 5
Garis      :  y2 = 1 − 2x

Jika parabola menyinggung garis maka di titik singgungnya parabola dan garis mempunyai nilai yang sama.

                       y1 = y1
         x2 + px + 5 = 1 − 2x
 x2 + px + 2x + 4 = 0
x2 + (p + 2)x + 4 = 0

Syarat kedua agar keduanya saling menyinggung adalah diskriminan persamaan di atas harus sama dengan nol.

                       D = 0
            b2 − 4ac = 0
 (p + 2)2 − 4∙1∙4 = 0
p2 + 4p + 4 − 16 = 0
      p2 + 4p − 12 = 0
    (p + 6)(p − 2) = 0
     p = −6 atau p = 2

Karena soal memberi syarat p > 0 maka nilai p yang memenuhi adalah 2.

Jadi, nilai p yang memenuhi agar parabola menyinggung garis tersebut adalah 2 (D).

Soal Fungsi Kuadrat UN 2010

Grafik fungsi kuadrat f(x) = x2 + bx +4  menyinggung garis y = 3x + 4. Nilai b yang memenuhi adalah ….

A.   −4
B.   −3
C.   0
D.   3
E.   4

Pembahasan

Karena bersinggungan, maka parabola dan garis mempunyai nilai yang sama di titik singgung.

                 y1 = y1
   x2 + bx + 4 = 3x + 4
 x2 + bx − 3x = 0
x2 + (b − 3)x = 0

Selain itu, dua fungsi yang bersinggungan akan mempunyai diskriminan sama dengan nol.

                      D = 0
           b2 − 4ac = 0
(b − 3)2 − 4∙1∙0 = 0
            (b − 3)2 = 0
                b − 3 = 0
                      b = 3

Jadi, nilai b yang memenuhi agar parabola dan garis tersebut bersinggungan adalah 3 (D).

Soal Fungsi Kuadrat UN 2013

Nilai a yang menyebabkan fungsi kuadrat f(x) = (a − 1)x2 + 2ax + a + 4 definit positif adalah ….

A.   a < 4/3
B.   a < 1
C.   a > 1
D.   a > 4/3
E.   1 < a < 4/3

Artkel Terkait  Pembahasan Biologi No. 61 - 65 TKA Saintek UTBK SBMPTN 2019



Pembahasan

Koefisien fungsi f(x) = (a − 1)x2 + 2ax + a + 4 adalah:

a = a − 1
b = 2a
c = a + 4

Definit positif berarti nilai f(x) selalu positif untuk semua harga x. Hal ini bisa terjadi jika grafik fungsi f(x) tidak memotong sumbu x dan terletak di atas sumbu x sehingga tidak mempunyai akar real (D < 0).

                                 D < 0
                       b2 − 4ac < 0
(2a)2 − 4(a − 1)(a + 4) < 0
    4a2 − 4(a2 + 3a − 4) < 0
   4a2 − 4a2 − 12a + 16 < 0
                     −12a + 16 < 0
                             −12a < −16

Masing-masing ruas dibagi −4 sehingga tanda pertidaksamaannya berubah.

                                   3a > 4
                                     a > 4/3

Jadi, nilai a agar fungsi kuadrat tersebut definit positif adalah a > 4/3 (D).

Pembahasan soal lain tentang Fungsi Kuadrat bisa disimak di:
Pembahasan Matematika IPA UN 2013 No. 6
Pembahasan Matematika IPA UN 2016 No. 6
Pembahasan Matematika IPA UN 2017 No. 5
Pembahasan Matematika IPA UN 2018 No. 4
Pembahasan Matematika IPA UN 2019 No. 5
Pembahasan Matematika IPA UN 2019 (2) No. 1

Simak juga, Pembahasan Matematika IPA UN: Persamaan Kuadrat.

Dapatkan pembahasan soal dalam file pdf  di sini.

Terimakasih

Semoga Bermanfaat

Leave a Reply

Your email address will not be published. Required fields are marked *