Pembahasan Matematika IPA UN 2019 No. 21

Posted on

pembahasan selanjutnya adalah

sinus, cosinus, dan tangens trigonometri, Pembahasan Matematika IPA UN 2019 No. 21 - 25 Paket 2

Pembahasan soal Ujian Nasional (UN) tahun 2019 bidang studi Matematika SMA-IPA Paket 2 nomor 21 sampai dengan nomor 25 tentang:

  • integral substitusi, 
  • trigonometri, 
  • grafik fungsi trigonometri, 
  • aturan sinus dan kosinus, serta 
  • dimensi tiga [jarak titik ke garis].

Soal No. 21 tentang Integral Substitusi

Hasil dari ∫ (2x − 1) (x2x + 3)3dx = ⋯.
A. ⅓ (x2x + 3)3 + C
B. ¼ (x2x + 3)3 + C
C. ¼ (x2x + 3)4 + C
D. ½ (x2x + 3)4 + C
E. (x2x + 3)4 + C



Pembahasan

Integral di atas termasuk integral substitusi. Cirinya, terdiri dari dua fungsi dengan derajat (pangkat tertinggi) berselisih satu.

Adapun cara penyelesaiannya sebagai berikut:

Cara menyelesaikan soal integral substitusi

Jadi, hasil dari integral tersebut adalah (C).

Perdalam materi ini di Pembahasan Matematika UN: Integral Fungsi Aljabar.

Soal No. 22 tentang Trigonometri

Diketahui cos ⁡α = a/2b, dengan α sudut lancip. Nilai csc ⁡α = ⋯.
Opsi jawaban cossec α, csc α, diketahui cos ⁡α, soal matematka IPA UN 2019

Pembahasan

Perhatikan gambar berikut ini!

Ilustrasi segitiga cos ⁡α = a/2b untuk menentukan nilai csc ⁡α

Karena α sudut lancip (kuadran I) maka semua nilai trigonometri bernilai positif.

Menentukan nilai csc α berdasarkan ilustrasi segitiga dan rumus

Jadi, nilai dari csc⁡α adalah opsi (D).

Perdalam materi ini di Pembahasan Matematika UN: Perbandingan Trigonometri.

Soal No. 23 tentang Grafik Fungsi Trigonometri

Gambar grafik fungsi trigonometri f(x) = 2 sin⁡ (x − 30)° adalah ….
Grafik fungsi trigonometri f(x) = 2sin⁡ (x − 30)°, opsi A dan B, UN 2019
Grafik fungsi trigonometri f(x) = 2sin⁡ (x − 30)°, opsi C dan D, UN 2019
Grafik fungsi trigonometri f(x) = 2sin⁡ (x − 30)°, opsi E, UN 2019

Pembahasan

Fungsi f(x) = 2 sin⁡ (x − 30)° sudah tampak jelas mempunyai amplitudo 2. [opsi C, D, dan E salah]

Sekarang kita tentukan pembuat nol-nya.

y =
2 sin⁡ (x − 30)° =
sin⁡ (x − 30)° =
x − 30° = 0°, 180°, 360°, …
x = 30°, 210°, 390°, …

Grafik fungsi sinus dengan pembuat nol di atas adalah:

Grafik fungsi f(x) = 2 sin⁡ (x − 30)°, dicari melalui pembuat nol

Jadi, grafik fungsi f(x) = 2 sin⁡ (x − 30)° adalah grafik pada opsi (A).

Perdalam materi ini di Fungsi Trigonometri dan Grafknya [Soal UN dan Pembahasan].

Artkel Terkait  Mengenal Sigmat atau jangka sorong dan cara membaca hasil pengukuran

Soal No. 24 tentang Aturan Sinus dan Kosinus

Sebidang tanah berbentuk segitiga dengan setiap titik sudutnya diberi tonggak pembatas A, B, dan C. Jika jarak antara tonggak A dan B adalah 300 m, sudut ABC = 45°, dan sudut BCA = 60°, jarak antara tonggak A dan C adalah ….
A. 50√6 m
B. 100√3 m
C. 150√2 m
D. 100√6 m
E. 300√6 m

Pembahasan

Perhatikan gambar berikut ini!

Sebidang tanah berbentuk segitiga dengan setiap titik sudutnya diberi tonggak pembatas A, B, dan C., soal aturan sinus segitiga UN 2019

Karena diketahui dua sudut dan satu sisi, kita gunakan aturan sinus segitiga.

Aturan sinus segitiga untuk menentukan jarak tonggak A dan C

Jadi, jarak antara tonggak A dan C adalah 100√6 m (D).

Perdalam materi ini di Pembahasan Matematika UN: Aturan Sinus dan Kosinus.

Soal No. 25 tentang Dimensi Tiga [jarak titik ke garis]

Diketahui kubus ABCD.EFGH dengan panjang rusuk 6 cm. Titik P, Q, dan R berturut-turut merupakan titik tengah rusuk EH, BF, dan CG. Jarak titik P ke garis QR adalah ….
A. 3√7 cm
B. 3√6 cm
C. 3√5 cm
D. 3√3 cm
E. 2√3 cm

Pembahasan

Perhatikan gambar berikut ini!

Jarak titik P ke garis QR

Jarak titik P ke garis QR, yaitu PP’ merupakan tinggi segitiga PQR. Selain itu, PP’ juga merupakan sisi miring segitiga siku-siku PP’S. Sehingga,

PP' adalah jarak P ke QR, merupakan sisi miring segitiga PP'S

Jadi, jarak dari titik P ke garis QR adalah 3√5 cm (C).

Perdalam materi ini di Pembahasan Matematika UN: Dimensi Tiga.

Simak Pembahasan Soal Matematika IPA UN 2019 Paket 2 selengkapnya.

Dapatkan pembahasan soal dalam file pdf  di sini.

Terimakasih

Semoga Bermanfaat

Leave a Reply

Your email address will not be published. Required fields are marked *