Pembahasan Matematika Dasar No. 1

Posted on

pembahasan selanjutnya adalah

Pembahasan soal Tes Kemampuan dan Potensi Akademik (TKPA) Seleksi Bersama Masuk Perguruan Tinggi Negeri (SBMPTN) tahun 2014 kode naskah 642 mata uji Matematika Dasar nomor 1 sampai dengan nomor 5 tentang:

  • program linear, 
  • fungsi kuadrat, 
  • sistem persamaan linear, 
  • matriks, dan 
  • peluang kejadian.

Soal No. 1 tentang Program Linear

Seorang penjahit akan membuat 2 model pakaian. Dia mempunyai persediaan batik 40 meter dan polos 15 meter. Model A memerlukan 1 meter batik dan 1,5 meter kain polo, sedang model B memerlukan 2 meter kain batik dan 0,5 meter kain polos. Maksimum banyak pakaian yang mungkin dapat dibuat adalah ….

A.   10
B.   20
C.   22
D.   25
E.   0



Pembahasan

Kita buat dulu tabel bantuan untuk soal di atas agar lebih mudah dipahami.

Model A (x)Model B (y)?
batik1240
polos1,50,515

Berdasarkan tabel bantuan di atas dapat dibuat model matematika sebagai berikut:

     x +     2y = 40   |×2| 2x + 4y = 80
1,5x + 0,5 y = 15   |×2| 3x +   y = 30
                                       —————— +
                                     5x + 5y = 110
                                         x + y = 22  [kedua ruas dibagi 5]

Jadi, maksimum banyak pakaian yang mungkin dapat dibuat adalah 22 pakaian (C).

Soal No. 2 tentang Fungsi Kuadrat

Untuk 0 af(x) = ax2 + 2ax + 10 memenuhi sifat ….

A.   selalu negatif
B.   selalu positif
C.   hanya positif di setiap x, dengan 0 < x < 10
D.   hanya negatif di setiap x, dengan 0 < x < 10
E.   hanya positif di setiap x, dengan x < 0 atau x > 10

Ebook Pembahasan Soal SBMPTN

Pembahasan

Koefisien fungsi kuadrat f(x) = ax2 + 2ax + 10 adalah: 

a = a 
b = 2a 
c = 10

Mari kita periksa nilai diskriminan fungsi kuadrat tersebut! 

D = b2 − 4ac
    = (2a)2 − 4×a×10
    = 4a2 − 40a
 
Pembuat nol diskriminan tersebut adalah:

4a2 − 40a = 0
  a2 − 10a = 0
 a(a − 10) = 0 
a = 0 atau a = 10

Sekarang perhatikan bilangannya!

Garis bilangan diskriminan

Pada bilangan tersebut tampak bahwa untuk 0 aD

Jadi, fungsi f(x) mempunyai sifat selalu positif (B).

Soal No. 3 tentang Sistem Persamaan Linear

Jika x + 2y = 2a + 1 dan 3xy = a + p maka 5x − 4y = ….

A.   2a + 2p − 1
B.   a + p − 1
C.   p − 1
D.   2p − 1
E.   2a − 1



Pembahasan

Mari kita eliminasi sistem persamaan linear tersebut!

3xy = a + p   |×2|   6x − 2y = 2a + 2p
x + 2y = 2a + 1 |×1|     x + 2y = 2a + 1
                                     ————————— −
                                   5x − 4y = 2p − 1

Jadi, nilai dari 5x − 4y adalah 2p − 1 (D).

Soal No. 4 tentang Matriks

Jika
Matriks A, B, dan AB

maka nilai zx adalah ….

A.   6
B.   3
C.   0
D.   −3
E.   −6

Pembahasan

Modal utama untuk menyelesaikan soal di atas adalah kemampuan mengalikan dua matriks.

Operasi perkalian matriks A dan B menghasilkan kesamaan matriks

terakhir adalah kesamaan matriks, di mana komponen-komponen yang bersesuaian nilainya sama. Kita ambil komponen kanan atas dan kanan bawah.

xy        = 2     [komponen kanan atas]
x + y + 2z = 4     [komponen kanan bawah]
—————— +
    −2x + 2z = 6
        −x + z = 3     [kedua ruas dibagi 2]
          zx = 3     [ditukar tempat menyesuaikan pertanyaan]

Jadi, nilai zx adalah 3 (B).

Soal No. 5 tentang Peluang Kejadian

Satu dadu dilempar 3 kali. Peluang mata dadu 6 muncul sedikitnya sekali adalah ….

A.   1/216
B.   3/216
C.   12/216
D.   18/216
E.   91/216



Pembahasan

Banyak semua kemungkinan sebuah dadu dilempar 3 kali adalah: 

n(S) = 6 × 6 × 6
        = 216

Kejadian mata dadu 6 muncul sedikitnya sekali berarti mata dadu 6 diharapkan selalu muncul dari satu dadu, 2 dadu, atau ketiga dadu dalam setiap kali pelemparan.

Jika A adalah kejadian mata dadu 6 muncul sedikitnya sekali maka Ac adalah kejadian mata dadu 6 tidak muncul sama sekali dalam setiap pelemparan.

  • pelemparan I   : muncul mata dadu 1, 2, 3, 4, 5 (5 kemungkinan)
  • pelemparan II  : muncul mata dadu 1, 2, 3, 4, 5 (5 kemungkinan)
  • pelemparan III : muncul mata dadu 1, 2, 3, 4, 5 (5 kemungkinan)

n(Ac) = 5 × 5 × 5
              = 125

    n(A) = n(S) − n(Ac)
            = 216 − 125
            = 91

Dengan demikian, peluang kejadian A adalah:

P(A) = n(A)/n(S)
         = 91/216

Jadi, peluang mata dadu 6 muncul sedikitnya sekali adalah 91/216 (E).

Pembahasan Matematika Dasar No. 6 – 10 TKPA SBMPTN 2014

Dapatkan pembahasan soal dalam file pdf  di sini.

Terimakasih

Semoga Bermanfaat