Pembahasan Matematika IPA UN 2015 No. 11

Posted on

pembahasan selanjutnya adalah

Pembahasan soal Matematika IPA Ujian Nasional 2015 nomor 11 sampai dengan nomor 15 tentang:

  • suku banyak (teorema sisa),
  • suku banyak (teorema faktor),
  • fungsi komposisi, 
  • program linear, dan
  • matriks.

Soal No. 11 tentang Suku Banyak (Teorema Sisa)

Suku banyak f(x) = 2x3 + ax2 + bx − 5 dibagi oleh x2x − 2 bersisa 3x + 2. Nilai a + b adalah ….

A.   6
B.   3
C.   −3
D.   −6
E.   −12



Pembahasan

Faktor dari pembagi suku banyak tersebut adalah 

x2x − 2 = (x − 2) (x + 1)

Jika suku banyak f(x) dibagi oleh (x − 2) (x + 1) bersisa 3x + 2 maka untuk x = 2 dan x = −1 nilai suku banyak tersebut adalah f(x) = 3x + 2. 

f(x)   = 3x + 2 
f(2)   = 3.2 + 2
         = 8 
f(−1) = 3.(−1) + 2
         = −1

Nah, sekarang tinggal menerapkan f(2) = 8 dan f(−1) = −1 pada suku banyak tersebut. 

f(x) = 2x3 + ax2 + bx − 5 

f(2) = 8
2.23 + a.22 + b.2 − 5 = 8
16 + 4a + 2b − 5 = 8
4a + 2b = −3   ….. (1) 

f(−1) = −1
2.(−1)3 + a.(−1)2 + b.(−1) − 5 = −1
−2 + ab − 5 = −1 
ab = 6          ….. (2)

Eliminasi persamaan (1) dan (2) untuk mendapatkan nilai a dan b. Persamaan (2) terlebih dahulu kita kalikan 2.

4a + 2b = −3
2a − 2b = 12
—————— +
         6a = 9 
           a = 9/6
              = 3/2

Substitusi a = 3/2 persamaan (2). 

   ab = 6
3/2 − b = 6
       − b = 6 − 3/2
             = 9/2 
          b = −9/2

Dengan demikian,

a + b = 3/2 − 9/2
         = −6/2
         = −3

Jadi, nilai dari a + b adalah −3 (C).

Perdalam materi ini di Pembahasan Matematika IPA UN: Suku Banyak.

Soal No. 12 tentang Suka Banyak (Teorema Faktor)

Salah satu faktor dari suku banyak 2x3 + (2m − 1)x2 − 13x + 6 adalah x − 2. Faktor linear lain dari suku banyak tersebut salah satunya adalah ….

Artkel Terkait  Pembahasan Matematika IPA UN 2019 No. 1

A.   x + 2
B.   x − 3
C.   x + 3
D.   2x + 1
E.   2x − 3

Pembahasan

Soal di atas biasanya diselesaikan dengan pembagian skematik atau cara Horner.

Pembagian skematik atau cara horner

Berdasarkan skema di atas diperoleh

6 + 8m − 14 = 0
               8m = 8 
                 m = 1

Kemudian kita substitusikan m = 1 pada hasil bagi (yang berwarna biru). 

2     2m + 3     4m − 7
2         5             −3

Ini artinya hasil baginya adalah 2x2 + 5x − 3.

Faktor hasil bagi juga merupakan faktor dari suku banyak.

2x2 + 5x − 3 = (2x − 1)(x + 3)

Jadi, salah satu faktor linear lain dari suku banyak tersebut adalah x + 3 (C).

Soal No. 13 tentang Fungsi Komposisi

Diketahui  f(x) = x2 − 4x + 6 dan g(x) = 2x + 3. Fungsi komposisi (f o g)(x) = ….

A.   2x2 − 8x + 12
B.   2x2 − 8x + 15
C.   4x2 + 4x + 3
D.   4x2 + 4x + 15
E.   4x2 + 4x + 27



Pembahasan

(f o g)(x) sering dinotasikan f[g(x)] sehingga yang menjadi acuan adalah f(x). 

     f(x) = x2 − 4x + 6 
f[g(x)] = [g(x)]2 − 4g(x) + 6

Perhatikan persamaan di atas! Dengan berpedoman pada f(x), kita dapat memperoleh f[g(x)] dengan menggantikan x dengan g(x).

Selanjutnya kita substitusikan g(x) = 2x + 3 pada f[g(x)]. 

f[g(x)] = [g(x)]2 − 4g(x) + 6
            = (2x + 3)2 − 4(2x + 3) + 6
            = 4x2 + 12x + 9 − 8x − 12 + 6
            = 4x2 + 4x + 3

Jadi, fungsi komposisi tersebut adalah (f o g)(x) = 4x2 + 4x + 3 (C).

Soal No. 14 tentang Program Linear

Seorang pengusaha perumahan memiliki lahan tanah seluas 10.000 m2 yang akan dibangun rumah tipe A dan tipe B. Untuk membangun rumah tipe A diperlukan tanah seluas 100 m2 dan rumah tipe B seluas 75 m2. Jumlah rumah yang dibangun tidak lebih dari 125 unit. Jika pengusaha tersebut menjual dengan keuntungan rumah tipe A adalah Rp8.000.000,00 dan rumah tipe adalah Rp6.000.000,00 serta semua rumah terjual habis maka keuntungan maksimum yang diperoleh pengusaha tersebut adalah ….

Artkel Terkait  Pembahasan Kimia UN: Laju Reaksi

A.   Rp750.000.000,00
B.   Rp800.000.000,00
C.   Rp850.000.000,00
D.   Rp900.000.000,00
E.   Rp950.000.000,00

Pembahasan

Kita gunakan tabel bantuan untuk soal tersebut.

Tipe A(x) Tipe B(y) 125
Luas Tanah 100
 4
75
 3
10.000
400
Keuntungan 8.000.000 6.000.000 ?

Berdasarkan tabel tersebut diperoleh persamaan:

  x +   y = 125 | × 4 | 4x + 4y = 500
4x + 3y = 400 | × 1 | 4x + 3y = 400
                                    —————— − 
                                              y = 100   

Substitusi x = 25 pada persamaan yang pertama diperoleh:

x +   y = 125
25 + y = 125
        y = 100

Fungsi objektif atau fungsi sasarannya adalah 

z = 8.000.000x + 6.000.000y
  = 8.000.000 × 25 + 6.000.000 × 100
  = 800.000.000

Jadi, keuntungan maksimum yang diperoleh oleh pengusaha tersebut adalah Rp800.000.000,00 (B).

Perdalam materi ini di Pembahasan Matematika IPA UN: Program Linear.

Soal No. 15 tentang Matriks

Diketahui matriks

Matriks ordo 2 x 2

Jika AB = C maka x + y + z = ….

A.   15
B.   21
C.   22
D.   27
E.   29



Pembahasan

Kita operasikan pengurangan matriks sebagaimana yang diketahui pada soal. 

                                  AB = C
Pengurangan matriks, kesamaan matriks
            Kesamaan matriks

Dari kesamaan matriks di atas diperoleh: 

z = 3 

x − 14 = −1 
         x = 13

6 − y = 1
    −y = −5 
      y = 5

Jadi, x + y + z = 13 + 5 + 3 = 21 (B).

Perdalam materi ini di Pembahasan Matematika IPA UN: Matriks.

Simak Pembahasan Soal Matematika IPA UN 2015 selengkapnya.

Dapatkan pembahasan soal dalam file pdf  di sini.

Terimakasih

Semoga Bermanfaat

Leave a Reply

Your email address will not be published. Required fields are marked *