Pembahasan Matematika IPA UN 2015 No. 16

Posted on

pembahasan selanjutnya adalah

Pembahasan soal Matematika IPA Ujian Nasional 2015 nomor 16 sampai dengan nomor 20 tentang:

  • operasi vektor, 
  • sudut antara dua vektor, 
  • proyeksi vektor, 
  • transformasi geometri, dan 
  • pertidaksamaan logaritma.

Soal No. 16 tentang Operasi Vektor

Diketahui vektor-vektor a = 4i + 2j − 5k, b = i + 3j + xk, dan c = 6i + 5j + 2k. Jika vektor a tegak lurus terhadap vektor b, hasil 2a + 3bc = ….

A.   5i + 8j + 6k
B.   5i + 8j − 6k
C.   5i − 8j + 6k
D.   6i + 5j − 8k
E.   6i − 5j + 6k



Pembahasan

Notasi vektor dalam bentuk kombinasi linear i, j, k, terkesan lebih sulit. Karena itu ubahlah ke bentuk kolom atau baris. 

a = (4, 2, −5) 
b = (1, 3, x) 
c = (6, 5, 2)

Bentuk di atas tampak lebih ramah. Meski tidak memengaruhi kecepatan mengerjakan, setidaknya dapat menambah semangat dan energi. Ok, lanjut!

Jika dua vektor saling tegak lurus maka perkalian dot-nya sama dengan nol. 

                           a . b = 0
4 . 1 + 2 . 3 + (−5) . x = 0
                      10 − 5x = 0
                              5x = 10 
                                x = 2

Substitusikan x = 2 pada vektor b sehingga diperoleh b = (1, 3, 2). Selanjutnya tinggal menyelesaikan tahap akhir.

    2a + 3bc
Operasi vektor dalam bentuk kolom
Vektor dalam bentuk kolom

Jadi, hasil dari 2a + 3bc = 5i + 8j − 6k (B).

Perdalam materi ini di Pembahasan Matematika IPA UN: Operasi Vektor.

Soal No. 17 tentang Sudut antara Dua Vektor

Diketahui vektor a dan b dengan |a| = 4, |b| = 3, dan |a + b| = 5. Jika θ adalah sudut antara vektor a dan b, nilai cos 2θ adalah ….

A.   1
B.   ⅘
C.   0
D.   −½
E.   −1

Pembahasan

Modal utama untuk menyelesaikan soal ini adalah mengetahui bahwa berlaku rumus

    |a + b|2 = |a|2+ |b|2 + 2ab cos θ
           25 = 16 + 9 + 2ab cos θ
2ab cos θ = 0
       cos θ = 0
              θ = 90°
      cos 2θ = cos 180°
                 = −1

Artkel Terkait  11 Antonim Beres dalam Bahasa Indonesia

Jadi, nilai dari cos 2θ = −1 (E).

Perdalam materi ini di Pembahasan Matematika IPA UN: Sudut antara Dua Vektor.

Soal No. 18 tentang Proyeksi Vektor

Diketahui vektor a = 2ipj + 3k dan b = i − 2j + 2k. Jika |c| adalah panjang proyeksi vektor a pada b dan |c| = 4 maka nilai p adalah ….

A.   −4
B.   −2
C.   2
D.   4
E.   8



Pembahasan

Untuk menyelesaikan soal proyeksi skalar, kita perlu menentukan perkalian vektor a dan b serta menentukan panjang vektor b. 

a = (2, −p, 3) 
b = (1, −2, 2) 

a . b = 2 + 2p + 6
        = 8 + 2p

panjang, besar, magnitide, atau modulo vektor
     = 3

Proyeksi  skalar vektor a terhadap b dirumuskan

Rumus proyeksi skalar atau panjang proyeksi vektor a terhadap b
 
12 = 8 + 2p
2p = 4 
  p = 2

Jadi, nilai p adalah 2 (C).

Perdalam materi ini di Pembahasan Matematika IPA UN: Proyeksi Vektor.

Soal No. 19 tentang Transformasi Geometri

Diketahui T1 adalah transformasi pencerminan terhadap garis y = x dan transformasi T2 adalah rotasi dengan pusat O(0, 0) sebesar 90° dengan arah putar berlawanan dengan putaran jarum jam. Persamaan bayangan garis 2x − 5y + 3 = 0 oleh transformasi T1 dilanjutkan T2 adalah ….

A.   2x + 5y − 3 = 0
B.   2x − 5y − 3 = 0
C.   2x + 5y + 3 = 0
D.   5x − 2y − 3 = 0
E.   5x − 2y + 3 = 0 

Pembahasan

T1 adalah transformasi pencerminan terhadap garis y = x. 

T1 : P(x, y) —→ P’(y, x)
Matriks transformasi pencerminan terhadap garis y = x

T2 adalah rotasi dengan pusat O(0, 0) sebesar 90° dengan arah putar berlawanan dengan putaran jarum jam.

Rumus matriks transformasi rotasi 90 derajat
     Matriks transformasi rotasi 90 derajat

T adalah transformasi T1 dilanjutkan T2. 

T = T2 o T1
   Komposisi matriks tranformasi T1 dilanjutkan T2
   Komposisi matriks tranformasi

Berdasarkan matriks komposisi tersebut diperoleh 

x‘ = −x   → x = −x
y‘ = y      y = y

Dengan demikian bayangan garis 2x − 5y + 3 = 0 adalah

2x − 5y + 3 = 0
2(−x’) − 5y’ + 3 = 0
−2x‘ − 5y’ + 3 = 0
2x’ + 5y’ − 3 = 0

Jadi, persamaan bayangan garis tersebut adalah 2x + 5y − 3 = 0 (A).

Perdalam materi ini di Pembahasan Matematika IPA UN: Transformasi Geometri.

Artkel Terkait  Pembahasan Matematika IPA UN 2017 No. 31

Soal No. 20 tentang Pertidaksamaan Logaritma

Penyelesaian pertidaksamaan 3log (3x2 + x) 3log (8 − x) adalah ….

A.   4/3 < x < 8 atau x < −2
B.   0 < x < 8 atau x < −2
C.   0 < x < 8 atau −2 < x < −1/3
D.   x > 8 atau x < −2
E.    x > 8 atau −2 < x < −1/3



Pembahasan

Yang perlu diperhatikan pertama kali saat mengerjakan soal pertidaksamaan logaritma adalah syarat yang berlaku bagi fungsi logaritma tersebut. Syarat ini sebaiknya dikerjakan terlebih dahulu agar tidak kelupaan.

Bilangan atau fungsi yang di-log syaratnya harus bernilai positif.

   3x2 + x > 0 
x(3x + 1) > 0

Garis bilangan untuk menentukan syarat logaritma 

8 − x > 0
    −x > −8 
      x

Garis bilangan syarat logaritma yang kedua

Hal kedua yang perlu diperhatikan adalah bilangan pokok logaritma. Karena bilangan pokoknya 3 (lebih dari 1), penyelesaiannya tidak merubah tanda pertidaksamaan. 

 3log (3x2 + x) < 3log (8 − x)
           3x2 + x < 8 − x
   3x2 + 2x − 8 < 0
(3x − 4)(x + 2) < 0

Garis bilangan pertidaksamaan logaritma

Gabungan dari ketiga garis bilangan tersebut merupakan penyelesaian akhir pertidaksamaan logaritma di atas.

Garis bilangan penyelesaian akhir pertidaksamaan logaritma

Jadi, penyelesaian pertidaksamaan tersebut adalah 0 xx

Perdalam materi ini di Pembahasan Matematika UN: Pertidaksamaan Eksponen dan Logaritma.

Simak Pembahasan Soal Matematika IPA UN 2015 selengkapnya.

Dapatkan pembahasan soal dalam file pdf  di sini.

Terimakasih

Semoga Bermanfaat

Leave a Reply

Your email address will not be published. Required fields are marked *